Demonstration of Asymmetric Gate-Oxide Thickness Four-Terminal FinFETs Having Flexible Threshold Voltage and Good Subthreshold Slope

Meishoku Masahara, Member, IEEE, Radu Surdeanu, Liesbeth Witters, Gerben Doornbos, Viet H. Nguyen, Geert Van den bosch, Christa Vrancken, Katia Devriendt, Francois Neuilly, Eddy Kunnen, Malgorzata Jurczak, and Serge Biesemans

Abstract—Flexible controllable threshold-voltage (V_{th}) asymmetric gate-oxide thickness (T_{ox}) four-terminal (4T) FinFETs with HfO$_2$ (equivalent oxide thickness (EOT) = 1.4 nm) for the drive gate and HfO$_2$ + thick SiO$_2$ (EOT = 6.4–9.4 nm) for the V_{th}-control gate have been successfully fabricated by utilizing ion-bombardment-enhanced etching process. Owing to the slightly thick V_{th}-control gate oxide, the subthreshold slope (S) is significantly improved as compared to the symmetrically thin (T_{ox}) 4T-FinFETs. As a result, the asymmetric T_{ox} 4T-FinFETs gain higher I_{on} than that for the symmetrically thin T_{ox} 4T-FinFETs under the same I_{off} conditions.

Index Terms—Asymmetric gate-oxide thickness, FinFET, four-terminal (4T) FinFET, ion-bombardment-enhanced etching (IBEE), subthreshold slope, threshold-voltage control.

I. INTRODUCTION

POSTFABRICATION threshold-voltage (V_{th}) tuning is the essential technology to overcome catastrophic increases in static-power consumption especially in ubiquitous electronics very large scale integrated circuits. Among many V_{th}-controllable devices, an independent double-gate (DG)-FinFET (named “4-terminal-FinFET” because of its four terminals: S; D; G1; and G2) [1]–[3] is expected to be one of the best choices because of its following advantages. The V_{th} in 4T-FinFETs can be controlled not only backwards but also forwards. This enables the I_{on}/I_{off} performance to flexibly range from an active state to a standby state. Since each four-terminal (4T)-FinFET has an independent V_{th}-control gate, the V_{th} for each transistor can be controlled individually. Furthermore, a much faster V_{th} control can be expected for the 4T-FinFET because of the very small G2, i.e., V_{th}-control gate. Previously reported 4T-FinFETs [1]–[3] had symmetrically thin gate oxides on both channels, unfortunately resulting in large subthreshold slope (S) due to the negative effect of the high second gate (G2) controllability [4]. To attain a good S even after DG separation, the asymmetric gate-oxide thickness (T_{ox}) (thin drive-gate T_{ox} and slightly thick V_{th} control gate T_{ox}) has been suggested [5]. However, no one could realize this structure, because both gate stacks were simultaneously formed in a conventional FinFET fabrication process.

This letter demonstrates, for the first time, asymmetric T_{ox} 4T-FinFETs with HfO$_2$ (EOT = 1.4 nm) for one side and HfO$_2$ + thick SiO$_2$ (EOT = 6.4–9.4 nm) for the other side fabricated using a novel ion-bombardment-enhanced etching (IBEE) process [6]. The superiority of the asymmetric T_{ox} 4T-FinFET over the symmetrically thin T_{ox} 4T-FinFETs is experimentally demonstrated.

II. DEVICE FABRICATION

The asymmetric T_{ox} gate stack was realized using Ar-IBEE of SiO$_2$ [6]. As shown in Fig. 1(a), the etch rate of SiO$_2$ in a 0.3% diluted HF/HCl mixture [7] is significantly enhanced by Ar-ion bombardment. The etching enhancement of SiO$_2$ in HF originates in the Si–O bond breaking due to the ion implanta-

Fig. 1. (a) Dependence of SiO$_2$ etch rate in pH-controlled dHF/HCl mixture on Ar-ion-implantation dose. (b) Changes in ion-bombarded-SiO$_2$ (circles) and as-grown SiO$_2$ thicknesses (triangles) and standard deviation σ of as-grown SiO$_2$ thickness (open triangles) during the etching. The SiO$_2$ etch rate is significantly enhanced by Ar-ion implantation. The pH-controlled dHF/HCl mixture ensures unchanged σ of as-grown SiO$_2$ during the etching.
on 8-in (100)-SOI wafers with 65-nm films on top of 145-nm buried oxide. The 15-nm-thick SiO$_2$ growth on both side channels was followed by 5-keV Ar tilted implant with 5×10^{14} cm$^{-2}$ on one side. The SiO$_2$ thickness, ion energy, and dose were adjusted so that Ar ions did not damage the Si channel. Then, the samples were dipped in a pH-controlled diluted HF/HCl mixture, where ion-bombarded SiO$_2$ was completely removed from one side after 4 min while thick SiO$_2$ still remained on the other side, as shown in Fig. 1(b). Note that the pH-controlled diluted HF/HCl mixture ensures unchanging uniformity of as-grown SiO$_2$ thickness, i.e., V$_{th}$-control gate-oxide thickness, during etching. Then, Atomic Layer Deposition HfO$_2$ (EOT = 1.4 nm) was deposited. As a result, the first gate oxide (T_{ox1}) became 1.4 nm. The second gate-oxide thickness (T_{ox2}) was varied from 6.4 to 9.4 nm by adjusting the etching time of SiO$_2$. After that, metal–organic chemical-vapor-deposited TiN (5 nm) and amorphous Si (200 nm) were deposited and etched back to 60 nm to reduce topography [8]. After gate patterning, the source and the drain were formed with conventional ion implantation followed by spacers and Ni salicidation. As the last step, Chemical Mechanical Polishing (CMP) was employed to separate the gates, stopping in the 40-nm SiON layer protecting the fin. No channel doping and no halo implantation were employed. Both PMOS and NMOS were fabricated. Here, we focus on PMOS data. Note that similar effect was confirmed for NMOS. The gate length (L_g) is 75 nm. The fin height (H_{Fin}) and thickness (T_{Fin}) are 65 and 30 nm, respectively.

III. RESULTS AND DISCUSSION

Fig. 3 shows the cross-sectional scanning transmission electron microscope (STEM) image of the fabricated asymmetric T_{ox} 4T-FinFETs. It can be confirmed that the double gates are completely separated and asymmetric T_{ox} ($T_{ox1} < T_{ox2}$) is successfully formed. Here, we define the left gate (G1) as a drive gate and the right gate (G2) as a V$_{th}$-control gate. Fig. 4 shows the measured I_d–V_{g} characteristics and the V_{th} (V_g at $I_d = W/L \times 10^{-7}$ A/µm) and S as a function of V_{g2} for the fabricated 4T-FinFETs. Note that I_d was normalized by H_{Fin} for the 4T mode while $2H_{Fin}$ for the 3T mode because C_g for the 4T-FinFETs is a half of C_g for the 3T-FinFET. Both the symmetric and the asymmetric T_{ox} 4T-FinFETs clearly exhibit flexible $V_{th(G1)}$ (V_{th} in the 4T mode) controllability by V_{g2} as shown in Fig. 4(a) and (b). Relatively high V_{ihDG} (V_{ih} in the 3T mode) originates in the workfunction of the TiN metal gate. For both cases, I_{off} can be controlled from a stand-by ($I_{off} = 10^{-11}$ A/µm) to an active state ($I_{off} = 10^{-7}$ A/µm). For the symmetric T_{ox} case, I_{off} increases with increasing V_{g2}, as shown in Fig. 4(a). This is due to the leakage current through the G2 insulator as can be understood from I_{g2} curves in Fig. 4(a). In contrast, for the asymmetric T_{ox} case, I_{off} is successfully suppressed owing to the slightly thick T_{ox2}. As shown in Fig. 4(c), the $V_{ih(G1)}$ shift rate ($\gamma = dV_{ih(G1)}/dV_{g2}$ becomes lower and, thus, S is improved with increasing T_{ox2} in any V_{g2} condition. Especially, S is dramatically decreased in the G2 inversion condition (V_{g2} being larger than V_{ihDG} that is, $V_{ih(G1)}$ being less than V_{ihDG}). This is because S is determined by the G2-side surface potential in this condition [9]. Analytically, S in the G2 depletion condition is given by $60\{1 + 3T_{ox1}/(3T_{ox2} + T_{Fin})\} \times [mV/dec]$. On the other hand, it turns to $60\{1 + (3T_{ox1} + T_{Fin})/3T_{ox2}\} \times [mV/dec]$ in the G2 inversion condition [9]. Thus, S is greatly improved by slightly increasing T_{ox2} in the G2 inversion condition. Fig. 5 shows I_d–V_{g} curves for the symmetric and asymmetric T_{ox} 4T-FinFETs under the same I_{off} condition. Obviously, the asymmetric T_{ox} 4T-FinFET gains higher I_{on} than that for the symmetric T_{ox} one because of the higher gate over drive ($V_{gd} - V_{th(G1)}$) due to the improved S. Also, it should be noted that 4T-FinFETs show greatly higher I_{on} as compared to the 3T-FinFET at an active state. As for the drive gate oxide (thin T_{ox1}), the ion-bombarded SiO$_2$ was completely removed and then HfO$_2$ layer was deposited. As for the V_{th}-control oxide (thick T_{ox2}), according to [7], the etched-back SiO$_2$ maintains the same property as virgin SiO$_2$. As for Si fin channel, Ar dose and energy were adjusted so that Ar ions could not pass through the SiO$_2$ and could not penetrate into the Si channel. We also confirmed that the IBEE-processed asymmetric T_{ox} 4T-FinFETs with a long L_g showed the same
Such as lowering of the dielectric reliability.

For the asymmetric results, we now consider that the proposed fabrication process damage the Si channel at all during IBEE process. From these results, we now consider that the proposed fabrication process for the asymmetric \(T_{\text{ox}} \) 4T-FinFET does not cause any issues such as lowering of the dielectric reliability.

IV. Conclusion

For the first time, flexibly \(V_{\text{th}} \)-controllable asymmetric \(T_{\text{ox}} \) 4T (separated DG)-FinFETs with HfO\(_2\) (EOT = 1.4 nm) for the drive gate and HfO\(_2\) + thick SiO\(_2\) (EOT = 6.4–9.4 nm) for the \(V_{\text{th}} \)-control gate have been successfully demonstrated. Owing to the slightly thick \(V_{\text{th}} \)-control gate oxide, the \(S \) is significantly improved as compared with the symmetrically thin \(T_{\text{ox}} \) 4T-FinFETs. As a result, the asymmetric \(T_{\text{ox}} \) 4T-FinFETs gives higher \(I_{\text{on}} \) than that for the symmetrically thin \(T_{\text{ox}} \) 4T-FinFETs.

References

